
Sisällysluettelo:
2025 Kirjoittaja: John Day | [email protected]. Viimeksi muokattu: 2025-01-23 14:42


ADT75 on erittäin tarkka, digitaalinen lämpötila -anturi. Se koostuu kaistaraon lämpötila-anturista ja 12-bittisestä analogisesta digitaaliseen muuntimeen lämpötilan valvontaa ja digitointia varten. Sen erittäin herkkä anturi tekee siitä riittävän pätevän mittaamaan ympäristön lämpötilan tarkasti.
Tässä opetusohjelmassa on kuvattu ADT75 -anturimoduulin liitäntä hiukkasfotoniin. Lämpötila -arvojen lukemiseen olemme käyttäneet arduinoa I2c -sovittimen kanssa. Tämä I2C -sovitin tekee liitännän anturimoduuliin helppoa ja luotettavaa.
Vaihe 1: Tarvittava laitteisto:



Tavoitteemme saavuttamiseen tarvittavat materiaalit sisältävät seuraavat laitteistokomponentit:
1. ADT75
2. Hiukkasfotoni
3. I2C -kaapeli
4. I2C -suoja hiukkasfotonille
Vaihe 2: Laitteiston kytkentä:


Laitteiston kytkentäosio selittää periaatteessa anturin ja hiukkasfotonin väliset tarvittavat johdotusliitännät. Oikeiden liitosten varmistaminen on perustarve, kun työskentelet minkä tahansa järjestelmän kanssa halutun lähdön saavuttamiseksi. Tarvittavat liitännät ovat siis seuraavat:
ADT75 toimii I2C: n kautta. Tässä on esimerkki kytkentäkaaviosta, joka osoittaa, miten anturin jokainen liitäntä kytketään.
Valmis levy on konfiguroitu I2C-rajapintaa varten, joten suosittelemme käyttämään tätä kytkentää, jos olet muuten agnostikko.
Tarvitset vain neljä johtoa! Tarvitaan vain neljä liitäntää Vcc, Gnd, SCL ja SDA, ja ne on kytketty I2C -kaapelin avulla.
Nämä yhteydet on esitetty yllä olevissa kuvissa.
Vaihe 3: Lämpötilan mittauskoodi:

Aloitetaan nyt hiukkaskoodista.
Kun käytät anturimoduulia arduinon kanssa, sisällytämme hakemistoon application.h ja spark_wiring_i2c.h. "application.h" ja spark_wiring_i2c.h -kirjasto sisältävät toiminnot, jotka helpottavat i2c -tiedonsiirtoa anturin ja hiukkasen välillä.
Koko hiukkaskoodi annetaan alla käyttäjän mukavuuden vuoksi:
#sisältää
#sisältää
// ADT75 I2C -osoite on 0x48 (72)
#define Addr 0x48
kelluva cTemp = 0,0, fTemp = 0,0;
int lämpötila = 0;
mitätön asennus ()
{
// Aseta muuttuja
Particle.variable ("i2cdevice", "ADT75");
Particle.variable ("cTemp", cTemp);
// Alusta I2C -viestintä päällikkönä
Wire.begin ();
// Alusta sarjaliikenne, aseta baudinopeus = 9600
Sarja.alku (9600);
viive (300);
}
tyhjä silmukka ()
{
allekirjoittamaton int -data [2];
// Aloita I2C -lähetys
Wire.beginTransmission (Addr);
// Valitse tietorekisteri
Wire.write (0x00);
// Pysäytä I2C -lähetys
Wire.endTransmission ();
// Pyydä 2 tavua dataa
Wire.requestFrom (Addr, 2);
// Lue 2 tavua dataa
// temp msb, temp lsb
jos (Wire.available () == 2)
{
data [0] = Wire.read ();
data [1] = Wire.read ();
}
// Muunna tiedot 12 bittiin
lämpötila = ((data [0] * 256) + data [1]) / 16;
jos (lämpötila> 2047)
{
lämpötila -= 4096;
}
cTemp = lämpötila * 0,0625;
fTemp = (cTemp * 1,8) + 32;
// Tulosta tiedot kojelautaan
Particle.publish ("Lämpötila Celsius:", Jono (cTemp));
Particle.publish ("Lämpötila Fahrenheit:", Jono (fTemp));
viive (1000);
}
Particle.variable () -funktio luo muuttujat anturin lähdön tallentamiseksi ja Particle.publish () -toiminto näyttää tuotoksen sivuston kojelaudalla.
Anturilähtö näkyy yllä olevassa kuvassa.
Vaihe 4: Sovellukset:

ADT75 on erittäin tarkka, digitaalinen lämpötila -anturi. Sitä voidaan käyttää monenlaisissa järjestelmissä, mukaan lukien ympäristönhallintajärjestelmät, tietokoneen lämpövalvonta jne. Se voidaan sisällyttää myös teollisiin prosessinohjauksiin sekä sähköjärjestelmien valvontaan.
Suositeltava:
Kiihtyvyyden mittaus käyttämällä ADXL345: tä ja hiukkasfotonia: 4 vaihetta

Kiihtyvyyden mittaus käyttämällä ADXL345: tä ja hiukkasfotonia: ADXL345 on pieni, ohut, erittäin pienitehoinen, 3-akselinen kiihtyvyysanturi, jonka tarkkuus (13-bittinen) mitataan jopa ± 16 g. Digitaalinen lähtötieto on muotoiltu 16-bittiseksi kaksoiskappaleeksi, ja se on saatavana digitaalisen I2 C-liitännän kautta. Se mittaa
Lämpötilan mittaus ADT75: n ja Arduino Nanon avulla: 4 vaihetta

Lämpötilan mittaus ADT75: n ja Arduino Nanon avulla: ADT75 on erittäin tarkka, digitaalinen lämpötila -anturi. Se koostuu kaistaraon lämpötila-anturista ja 12-bittisestä analogisesta digitaaliseen muuntimeen lämpötilan valvontaa ja digitointia varten. Sen erittäin herkkä anturi tekee siitä riittävän pätevän minulle
Lämpötilan mittaus käyttäen MCP9803: ta ja hiukkasfotonia: 4 vaihetta

Lämpötilan mittaus käyttäen MCP9803: ta ja hiukkasfotonia: MCP9803 on 2-johtiminen korkean tarkkuuden lämpötila-anturi. Ne on varustettu käyttäjän ohjelmoitavilla rekistereillä, jotka helpottavat lämpötilan tunnistamista. Tämä anturi sopii erittäin kehittyneeseen monivyöhykkeen lämpötilanvalvontajärjestelmään
Lämpötilan mittaus käyttämällä ADT75 ja Raspberry Pi: 4 vaihetta

Lämpötilan mittaus käyttämällä ADT75 ja Raspberry Pi: ADT75 on erittäin tarkka, digitaalinen lämpötila -anturi. Se koostuu kaistaraon lämpötila-anturista ja 12-bittisestä analogisesta digitaaliseen muuntimeen lämpötilan valvontaa ja digitointia varten. Sen erittäin herkkä anturi tekee siitä riittävän pätevän minulle
Lämpötilan mittaus käyttämällä AD7416ARZ: a ja hiukkasfotonia: 4 vaihetta

Lämpötilan mittaus käyttämällä AD7416ARZ: a ja hiukkasfotonia: AD7416ARZ on 10-bittinen lämpötila-anturi, jossa on neljä yksikanavaista analogista digitaaliseen muunninta ja sisäänrakennettu lämpötila-anturi. Osien lämpötila -anturiin pääsee käsiksi multiplekserikanavien kautta. Tämä korkean tarkkuuden lämpötila